The cohomology of a Coxeter group with group ring coefficients

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cohomology of Coxeter groupswith group ring coefficients: II

The cohomology of a group G with coefficients in a left G–module M is denoted H .GIM /. We are primarily interested in the case where M is the group ring, ZG . Since ZG is a G–bimodule, H .GIZG/ inherits the structure of a right G– module. When G is discrete and acts properly and cocompactly on a contractible CW complex , there is a natural topological interpretation for this cohomology group:...

متن کامل

The Cohomology of Right Angled Artin Groups with Group Ring Coefficients

We give an explicit formula for the cohomology of a right angled Artin group with group ring coefficients in terms of the cohomology of its defining flag complex.

متن کامل

Module cohomology group of inverse semigroup algebras

Let $S$ be an inverse semigroup and let $E$ be its subsemigroup of idempotents. In this paper we define the $n$-th module cohomology group of Banach algebras and show that the first module cohomology group $HH^1_{ell^1(E)}(ell^1(S),ell^1(S)^{(n)})$ is zero, for every odd $ninmathbb{N}$. Next, for a Clifford semigroup $S$ we show that $HH^2_{ell^1(E)}(ell^1(S),ell^1(S)^{(n)})$ is a Banach sp...

متن کامل

The Coherent Cohomology Ring of an Algebraic Group

Let G be a group scheme of finite type over a field, and consider the cohomology ring H∗(G) with coefficients in the structure sheaf. We show that H∗(G) is a free module of finite rank over its component of degree 0, and is the exterior algebra of its component of degree 1. When G is connected, we determine the Hopf algebra structure of H∗(G).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Duke Mathematical Journal

سال: 1998

ISSN: 0012-7094

DOI: 10.1215/s0012-7094-98-09113-x